请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”

爱看小说网 www.izxs.net,最快更新九章算术译注最新章节!

    魏 刘徽 注

    唐朝议大夫行太史令上轻车都尉臣李淳风等奉敕注释〔1〕

    方田〔2〕以御田畴界域〔3〕

    今有田广十五步〔4〕,从十六步〔5〕。问〔6〕:为田几何〔7〕?

    荅曰〔8〕:一亩〔9〕。

    又有田广十二步,从十四步。问:为田几何?

    荅曰:一百六十八步〔10〕。图〔11〕:从十四,广十二。

    方田术曰〔12〕:广、从步数相乘得积步〔13〕。此积谓田幂〔14〕。凡广、从相乘谓之幂〔15〕。  臣淳风等谨按:经云“广、从相乘得积步”,注云“广、从相乘谓之幂”,观斯注意,积、幂义同〔16〕。以理推之,固当不尔。何则?幂是方面单布之名,积乃众数聚居之称。循名责实,二者全殊〔17〕。虽欲同之,窃恐不可。今以凡言幂者据广从之一方;其言积者举众步之都数〔18〕。经云相乘得积步,即是都数之明文。注云谓之为幂,全乖积步之本意。此注前云积为田幂,于理得通。复云谓之为幂,繁而不当。今者注释存善去非,略为料简〔19〕,遗诸后学。以亩法二百四十步除之〔20〕,即亩数。百亩为一顷〔21〕。臣淳风等谨按:此为篇端,故特举顷、亩二法。余术不复言者,从此可知。按:一亩田,广十五步,从而疏之〔22〕,令为十五行,即每行广一步而从十六步。又横而截之,令为十六行,即每行广一步而从十五步。此即从疏横截之步,各自为方。凡有二百四十步,为一亩之地,步数正同。以此言之,即广从相乘得积步,验矣。二百四十步者,亩法也;百亩者,顷法也。故以除之,即得。

    今有田广一里〔23〕,从一里。问:为田几何?

    荅曰:三顷七十五亩〔24〕。

    又有田广二里,从三里。问:为田几何?

    荅曰:二十二顷五十亩。

    里田术曰:广、从里数相乘得积里〔25〕。以三百七十五乘之,即亩数。按:此术广从里数相乘得积里。故方里之中有三顷七十五亩〔26〕,故以乘之,即得亩数也。

    【注释】

    〔1〕朝议大夫:散官,简称朝议,始置于隋,唐因之,为文散官正五品下。  太史令:官名,相传置于夏代,掌文书。后代沿置,汉景帝中元六年(前114)隶太常,掌天文、历法及修撰史书。唐初隶秘书省,从五品下。龙朔二年(662)改称秘阁郎中,后复名。  上轻车都尉:官名,唐武德七年(624)改开府仪同三司置“轻车都尉”,为从四品上勋官。都尉,唐、宋、金、元、明武臣勋官等级,次于将军,高于骑尉,有上轻车都尉、轻车都尉、上骑都尉等名目。  奉敕:奉皇帝之命。敕,汉魏指尊长、长官对后辈、下属的告诫等上命下之辞。南北朝之后专指皇帝诏书。

    〔2〕方田:九数之一。传统的方田讨论各种面积问题和分数四则运算。狭义的方田,后来又称为直田,即长方形的田,如图1-1。李籍云:“田者,围周之以为疆,横从之以为理,平夷著建,兴作利养之地也。方田者,田之正也。诸田不等,以方为正,故曰方田。”

    图1-1 直田

    (采自《古代世界数学泰斗刘徽》)

    〔3〕御:本义是驾驭马车,引申为处理,治理。《玉篇》:“御,治也。”李籍与《广韵》均云:“御,理也。”  畴:已经耕作的田地。李籍引《说文解字》:“畴,耕治之田也。”  界域:李籍云:“疆也。”

    〔4〕今有:假设有,《九章算术》问题题设的起首方式。今,连词,表示假设,相当于“若”、“假如”。《孟子·梁惠王下》:“今王与百姓同乐,则王矣。”由秦汉数学简牍(《数》、《算书》、《算数书》、《算术》等)知道,先秦数学问题题设的起首方式异彩纷呈,大多数题目没有任何引语作为起首,少数或以“程”,或以“取程”,或以“有”,或以“今有”等作起首。张苍等整理《九章算术》,遂以“今有”统一了数学问题题设的起首方式。当一种术文有多个例题时,则从第二题起题设的起首用“又有”。  广:一般指物体的宽度。李籍云:广,“阔也”。《墨子·备城门》:“沈机长二丈,广八尺。”有时广有方向的意义,表示东西的长度。赵爽《周髀算经注》:“东西南北谓之广长。”

    〔5〕从(zōnɡ):又音zònɡ,又作袤,今作纵,表示直,南北的量度。《集韵》:“南北曰从。”李籍云:从,“长也”。广、从,今多译为宽(或阔)、长。实际上,中国古代的广、从有方向的含义。因此,广未必小于从,见下乘分术的第三个例题。《墨子·备城门》中“突”之“袤九尺,广十尺”,也是广大于袤。  步:古代长度单位,秦汉1步为5尺。隋唐以后为6尺。

    〔6〕问:中国古典数学问题发问的起首语。由秦汉数学简牍知道,先秦数学问题发问的起首也是不统一的。有的没有任何发问的起首语,而采取直叙的方式;有的以“欲”、“欲求”、“求”作为发问的起首语。张苍等整理《九章算术》,遂以“问”统一了数学问题发问的起首方式。

    〔7〕几何:若干,多少。李籍云:“几何,数之疑也。”中国古典数学问题的发问语。传统数学问题的发问语也经历了一个发展过程,秦汉数学简牍的发问方式不统一,尽管有的以“几何”发问,占了大多数,但还有的没有任何发问语,而以“欲”、“欲求”、“求”代替发问语。张苍等整理《九章算术》,则完全以“几何”发问,没有例外。明末利玛窦与徐光启合译欧几里得的“Element”,定名为《几何原本》,“几何”实际上是拉丁文mathematica的中译,指整个的数学。后日本将geometria译作几何学,传到中国,几何遂成为数学中关于空间形式的学问。

    〔8〕荅:同“答”。对荅之荅原作“畣”。荅本是小豆之名,后来借为对荅之荅。《玉篇》:“荅,当也。”《五经文字·艸部》:“荅:此荅本是小豆之一名,对荅之荅本作畣。经典及人间行此已久,故不可改。”《尔雅》:“畣,然也。”《玉篇》:“畣,今作荅。”对荅之荅,后作答。《广韵》:“答,当也,亦作荅。”本书的答案,凡引原文皆用“荅”字,而译文则全部改作“答”。从秦汉数学简牍可以看出,在先秦,答案的表示方式相当复杂,有的没有任何引语,以直叙的方式给出答案,有的以“曰”、“得”或“得曰”作引语给出答案。值得注意的是,没有一个题目使用“荅曰”。张苍等整理《九章算术》,则统一使用“荅曰”,没有任何例外。

    〔9〕亩:古代的土地面积单位。《九章算术》中1亩为240步。此处“步”实际上为步2。

    〔10〕步:此处“步”为步2。

    〔11〕图:此“图”应该在刘徽所撰《九章重差图》中,已亡佚。本书凡提到刘徽注之图者,除另加说明者外,皆亡佚。

    〔12〕术:方法,计算程序。《算数书》中的计算方法皆作“术”,不是简化字;《九章算术》本作“術”,简化成“术”。《算数书》之“术”当是“術”的假借字。术(shú),指秫。又音zhú,菊科草类。

    〔13〕乘:登,升。李籍云:乘,“登也。登之使其数多”。广从步数相乘得积步:设方田的面积为S,广、从分别是a,b,则长方形的面积公式是

    S=ab。(1-1)

    积步:是《九章算术》提出的表示面积的概念,也可以作为面积的单位,即步之积。将1步长的线段在平面上积累起来,长a步,就是a积步,常简称为a步,步即今之平方步,因此古代之步,视不同情况,有时指今之步,有时指步2。下文中之积尺、积寸、积里等概念与此类似。由此又引申出积分等概念。值得注意的是,刘徽对公式(1-1)没有试图证明,显然是当作公理使用的。

    〔14〕幂:即今之面积。王莽铜斛铭文中始使用,作“冥”。根据不同的情况,刘徽《九章算术注》中有田幂、矩幂、勾幂、股幂、弦幂、方幂、圆幂、立幂等,还有以颜色表示的青幂、朱幂、黄幂等。清末李善兰、华衡芳等翻译西方数学著作,遂用“幂”表示指数,沿用至今。古今“幂”的含义既有联系,又有区别。

    〔15〕凡广从相乘谓之幂:这是刘徽对幂即面积的定义。

    〔16〕李淳风等从刘徽的话中得出“积幂义同”的结论是完全错误的。刘徽将“广从相乘”这种积称为幂,幂与积是种属关系,积包括幂,但积不一定是幂,因为三数相乘的体积,或更多的数相乘,也是积。李淳风等由刘徽注看不出幂和积的区别,说明他们的逻辑水平低下。

    〔17〕循名责实,二者全殊:李淳风等认为积与幂完全不同。他们不懂幂属于积,两者有相同之处,说积、幂“二者全殊”,当然是错误的。他们指责正确的刘徽,徒然暴露其数学水平的低下和逻辑的混乱。殊,不同,异。《周易·系辞下》:“天下同归而殊涂。”

    〔18〕都(dū)数:总数。都,聚,汇集。《管子·水地》:“卑也者,道之室,王者之器。而水以为都居。”注云:“都,聚也。”引申为总,总共。《汉书·西域传》:“都护之起,自吉置矣。”颜师古注:“都犹总也,言总护南北之道。”

    〔19〕料简:品评选择。蔡邕《太尉杨公碑》:“沙汰虚冗,料简贞实。”亦作“料拣”。自唐起,“料简”就有误作“科简”者。《北史·循吏·张华原传》:“华原科简轻重,随事决遣。”

    〔20〕亩法:1亩的标准度量。李籍引《司马法》曰:“六尺为步,步百为亩。秦孝公之制,二百四十步为一亩。”秦汉制度1亩=240步2,1顷=100亩。已知某田地的面积的步2数,求亩数,便以240步2为除数,故称240步2为亩法。秦汉数学简牍与此同。  除:在《九章算术》及其刘徽注中有二义。一是除去,即现今之“减”。卷六“客去忘持衣”问刘徽注“除”曰:“除,其减也。”一是现今“除法”的除,此处即用此义。李籍释“除”云:“去也。去之使其少。”可见“除”之义先引申为“减去”,后进一步引申为除法之“除”。此二义在下文中一般不再一一指出,观前后文及译文即可明白。

    〔21〕百亩为一顷:100亩为1顷,故称为顷法。

    〔22〕疏:分,截。《史记·黥布传》:“上裂地而王之,疏爵而贵之。”司马贞索隐:“按:裂地是对文,故知疏即分也。”此处横截与从疏为对文,知“疏”即截。

    〔23〕里:长度单位,秦汉时1里为300步。

    〔24〕三顷七十五亩:1里2=375亩=3顷75亩。故375亩为里法。《算数书》亦有此问。

    〔25〕以里为单位的田地的面积求法,其公式与方田术(1-1)相同。

    〔26〕故:犹“夫”。裴学海《古书虚字集释》卷五:“‘故’,犹‘夫’也,提示之词也。”

    【译文】

    方田为了处理田地等面积

    假设一块田宽15步,长16步。问:田的面积有多少?

    答:1亩。

    又假设一块田宽12步,长14步。问:田的面积有多少?

    答:168步。图:长14,宽12。

    方田术:宽与长的步数相乘,便得到积步。这种积叫作田的面积。凡是宽与长的步数相乘,就叫它作面积。  淳风等按:《九章算术》说宽、长步数相乘,便得到积步。刘徽注说宽、长相乘,就把它叫作幂。考察这个注的意思,积和面积的意义相同。按道理推究之,本不应当是这样的。为什么呢?面积是一层四方布的名称,积却是众多的数量积聚的名称。循名责实,二者完全不同。即使想把它看成相同的,我们认为是不可以的。现在凡是说到面积,都是占据有宽有长的一个方形,而说到积,都是列举众多步数的总数。《九章算术》说相乘得到积步,就是总数的明确文字。刘徽注说叫它做面积,完全背离了积步的本意。这个注前面说积是田的面积,在道理上可以讲得通。又说叫它做面积,繁琐而不恰当。现在注释,留下正确的,删去错误的,稍加品评选择,把它贡献给后来的学子。以亩法240步2除积步,就是亩数。100亩为1顷。淳风等按:这是本篇的开端,因此特别举出顷、亩二者的法。其他的术中不再谈到它们,就是因为由这里可以知道。按:1亩地,宽为15步,竖着分割它,使成为15行,就是每行宽为1步而长为16步。又横着裁截它,使成为16行,就是每行宽为1步而长为15步。这就是竖着分割横着裁截的1步,各自成正方形,共有240步2。作为1亩的田地,步数恰好与亩法相同。由此说来,就是宽、长相乘便得到积步,被验证了。240步2,是亩法;100亩,是顷法。因此,用来除积步,便得到答案。

    假设一块田宽1里,长1里。问:田的面积有多少?

    答:3顷75亩。

    又假设一块田宽2里,长3里。问:田的面积有多少?

    答:22顷50亩。

    里田术:宽与长的里数相乘,便得到积里。以375亩乘之,就是亩数。按:这一术中,宽、长里数相乘,便得到积里。而1方里中有3顷75亩,所以以它乘积里,就得到亩数。

    今有十八分之十二〔1〕。问:约之得几何〔2〕?

    荅曰:三分之二。

    又有九十一分之四十九。问:约之得几何?

    荅曰:十三分之七。

    约分〔3〕按:约分者,物之数量,不可悉全〔4〕,必以分言之〔5〕。分之为数,繁则难用。设有四分之二者,繁而言之〔6〕,亦可为八分之四;约而言之〔7〕,则二分之一也〔8〕。虽则异辞,至于为数,亦同归尔。法实相推〔9〕,动有参差〔10〕,故为术者先治诸分〔11〕。术曰:可半者半之〔12〕;不可半者,副置分母、子之数〔13〕,以少减多,更相减损〔14〕,求其等也〔15〕。以等数约之〔16〕。等数约之,即除也。其所以相减者,皆等数之重叠〔17〕,故以等数约之。

    【注释】

    〔1〕非名数真分数的表示方式在中国也有一个发展过程。由秦汉数学简牍知道,现今的真分数(a,b皆为正整数)在先秦有两种表示方式:一是表示为“b分a”,一是表示为“b分之a”。张苍等整理《九章算术》,遂统一为“b分之a”。

    〔2〕约:本义是缠束。《说文解字》:“约,缠束也。”引申为精明、简要。《吴子·论将》:“约者,法令省而不烦。”李籍云:“约者,欲其不烦。”这里是约简。

    〔3〕约分:约简分数。约分术,就是约简分数的方法。

    〔4〕不可悉全:不可能都是整数。悉,副词,全,都。全,整数。

    〔5〕必以分言之:必须以分数表示之。刘徽在这里说明分数产生的最初的原因。言,记载,表示。

    〔6〕繁而言之:繁琐地表示之。

    〔7〕约而言之:约简地表示之。

    〔8〕此谓。

    〔9〕推:计算。

    〔10〕动有参差(cēn cī):往往有参差不齐的情形。动,往往。《史记·律书》:“且兵凶器,虽克所愿,动亦耗病。”参差,长短、高低、大小不等。《诗经·周南·关雎》:“参差荇菜,左右流之。”

    〔11〕诸分:各种分数运算法则。

    〔12〕可半者半之:可以取其一半的就取其一半。亦即分子、分母都是偶数的情形,可以被2除。

    〔13〕副置:即在旁边布置算筹。李籍云:“别设算位,有所分也。”副,贰,次要的(区别于主或正)。段玉裁《说文解字注》:“周人言贰,汉人言副,古今语也。”李籍云:副,“敷救切,别也”。置,“陟吏切,设也”。

    〔14〕更相减损:相互减损。这是一种与辗转相除法异曲同工的运算程序。更相,相互。《史记·张丞相列传》:“田文言曰:‘今此三君者,皆丞相也。’其后三人竟更相代为丞相。”减损,减少。《史记·礼书》:“叔孙通颇有所增益减损。”

    〔15〕等:等数的简称。等数,今之最大公约数。因它是分子、分母更相减损,至两者的余数相等而得出的,故名。

    〔16〕以等数约之:以等数同时除分子与分母。

    〔17〕皆等数之重叠:分子、分母都是等数的重叠。设分母、分子分别为a,b,等数为rn-1=rn,计算每次更相减损的余数ri,i=1,2,3,…n,则

    rn-2=rn-1qn+rn=rn(qn+1),

    rn-3=rn-2qn-1+rn-1=rn(qnqn-1+qn-1+1),

    rn-4=rn-3qn-2+rn-2=rn(qnqn-1qn-2+qn-1qn-2+qn-2+qn+1),

    …

    b=rnP(q2,q3,…qn),

    a=rnQ(q1,q2,…qn)。

    其中P,Q分别是q2,q3,…qn与q1,q2,…qn的多项式,是整数。因此a,b都是rn的倍数,故云皆等数之重叠。

    【译文】

    假设有。问:约简它,得多少?

    答:。

    又假设有。问:约简它,得多少?

    答:。

    约分按:要约分,是因为事物的数量,不可能都是整数,必须用分数表示之;而分数作为一个数,太繁琐就难以使用。假设有,繁琐地表示之,又可以成为;约简地表示之,就是。虽然表示形式不同,而作为数,还是同样的结果。法与实互相推求,常常有参差不齐的情况,所以探讨计算法则的人首先要研究各种分数的运算法则。术:可以取分子、分母一半的,就取它们的一半;如果不能取它们的一半,就在旁边布置分母、分子的数值,以小减大,辗转相减,求出它们的等数。用等数约简之。用等数约简之,就是除。之所以用它们辗转相减,是因为分子、分母都是等数的重叠。所以用等数约简之。

    今有三分之一,五分之二。问:合之得几何〔1〕?

    荅曰:十五分之十一。

    又有三分之二,七分之四,九分之五。问:合之得几何?

    荅曰:得一、六十三分之五十。

    又有二分之一,三分之二,四分之三,五分之四。问:合之得几何?

    荅曰:得二、六十分之四十三。

    合分〔2〕臣淳风等谨按:合分知〔3〕,数非一端,分无定准,诸分子杂互,群母参差。粗细既殊,理难从一。故齐其众分,同其群母〔4〕,令可相并〔5〕,故曰合分。术曰:母互乘子,并以为实。母相乘为法。母互乘子,约而言之者,其分粗〔6〕;繁而言之者,其分细〔7〕。虽则粗细有殊,然其实一也。众分错难,非细不会〔8〕。乘而散之,所以通之〔9〕。通之则可并也。凡母互乘子谓之齐,群母相乘谓之同〔10〕。同者,相与通同共一母也;齐者,子与母齐,势不可失本数也〔11〕。方以类聚,物以群分〔12〕。数同类者无远;数异类者无近。远而通体知,虽异位而相从也;近而殊形知,虽同列而相违也〔13〕。然则齐同之术要矣〔14〕:错综度数,动之斯谐〔15〕,其犹佩觿解结〔16〕,无往而不理焉。乘以散之,约以聚之,齐同以通之,此其算之纲纪乎〔17〕。  其一术者〔18〕,可令母除为率〔19〕,率乘子为齐〔20〕。实如法而一〔21〕。不满法者,以法命之〔22〕。今欲求其实,故齐其子,又同其母,令如母而一。其余以等数约之,即得知。所谓同法为母,实余为子,皆从此例。其母同者,直相从之〔23〕。

    【注释】

    〔1〕合:聚合,聚集。《论语·宪问》:“桓公九合诸侯。”进而引申为合并,相加。

    〔2〕合分:将分数相加。李籍云:“合分者,欲其不离。”合分术,就是将分数相加的方法。

    〔3〕合分知:与下文“远而通体知”、“近而殊形知”,此三“知”字,训“者”,见刘徽序“故枝条虽分而同本干知”之注释。

    〔4〕齐:使一个数量与其相关的数量同步增长的运算。此处谓使各个分数的分子分别与其分母同步增长,即刘徽所说“母互乘子谓之齐”。  同:使几组数量中某同类数相同的运算。此处谓使各个分数的分母相同,即刘徽所说“群母相乘谓之同”。

    〔5〕并:即相加。表示“加”,古代有“合”、“并”、“从”、“和”等术语。

    〔6〕粗:指数值大。分数约简后分数单位变大,亦即“约以聚之”。若分子、分母有等数m,a=mp,b=mq,则。

    〔7〕细:指数值小。分子、分母同乘一数,使分数单位变小,亦即“乘以散之”。即,其中m是正整数。

    〔8〕众分错难,非细不会:诸分数错互(指分数单位不同一),难以处理,不将它们的分数单位变小,便不能相会通。

    〔9〕通:通过等量变换使各组数量会通的运算。对分数而言就是通分。

    〔10〕这是刘徽关于齐、同的定义。

    〔11〕“齐者”三句:此谓通过“同”的运算,使诸分数有一共同的分母,而通过“齐”的运算,使诸分数的值不丧失什么,亦即其值保持不变。势,本义是力量,威力,权力,权势。引申为形势,态势。失,遗失,丧失,丢掉。《说文解字》:“失,纵也。”段玉裁注:“失,一曰舍也。”

    〔12〕方以类聚,物以群分:义理按类分别相聚,事物按群分门别类。语出《周易·系辞上》:“方以类聚,物以群分,吉凶生矣。”孔颖达疏:“方,道也。”方,义理,道理。

    〔13〕“数同类者”六句:刘徽借鉴稍前的何晏的“同类无远而相应,异类无近而不相违”,反其意而用之,是说同类的数不管表面上有什么差异,总还是相近的;不同类的数不管表面上多么接近,其差异总是很大的。通体,相似、相通。相从,狭义地指相加,广义地指相协调。

    〔14〕齐同术:在数学运算中,“齐”与“同”一般同时运用,称为“齐同术”,今称为“齐同原理”。它最先产生于分数的通分,如分数,通分后化成,就是同其母,齐其子。后来推广到率的运算中。

    〔15〕错综度数,动之斯谐:错综复杂的数量,施之齐同术就会和谐。斯,则,就。

    〔16〕犹:好像,如同。《左传·隐公四年》:“夫兵,犹火也。”  觿(xī):古代用以解绳结的角锥。《诗经·卫风·芃兰》:“芃兰之支,童子佩觿。”

    〔17〕“乘以散之”四句:刘徽在这里将“乘以散之,约以聚之,齐同以通之”这三种等量变换看成“算之纲纪”。这三种等量变换本来源于分数运算,刘徽将其从分数推广到“率”的运算中,实际上将“率”看成“算之纲纪”。纲纪,大纲要领,法度。《荀子·劝学》:“礼者,法之大分、类之纲纪也。”

    〔18〕其一术:另一种方法。

    〔19〕母除为率:指分别以各分数的分母除众分母之积,以其结果作为这个分数的率。

    〔20〕率乘子为齐:以各个率乘各自的分子,就是齐。

    〔21〕母互乘子,并以为实。母相乘为法。实如法而一:即分数加法法则

    显然这里分数的加法没有用到分母的最小公倍数。

    〔22〕以法命之:即以法为分母命名一个分数。命,命名。

    〔23〕其母同者,直相从之:如果各个分数的分母相同,就直接相加。直,径直,直接。《史记·魏公子列传》:“侯生摄敝衣冠,直上载公子上座,不让。”从,本义是随从,此处是“加”的意思。

    【译文】

    合分淳风等按:合分,是因为分数不止一个,分数单位也不同一;诸分子互相错杂,众分母参差不齐;分数单位的大小既然不同,从道理上说难以遵从其中一个数。因此,要让各个分数分别与分母相齐,让众分母相同,使它们可以相加,所以叫作合分。术曰:分母互乘分子,相加作为实。分母相乘作为法。分母互乘分子:约简地表示一个分数,其分数单位大;繁琐地表示一个分数,其分数单位小。虽然单位的大小有差别,然而其实是一个。各个分数互相错杂,难以处理,不将其分数单位化小,就不能会通。通过乘就使分数单位散开,借此使它们互相通达。使它们互相通达就可以相加。凡是分母互乘分子,就把它叫作齐;众分母相乘,就把它叫作同。同就是使诸分数相互通达,有一个共同的分母;齐就是使分子与分母相齐,其态势不会改变本来的数值。各种方法根据各自的种类聚合在一起,天下万物根据各自的性质分离成不同的群体。数只要是同类的就不会相差很远,数只要是异类的就不会很切近。相距很远而能相通者,虽在不同的位置上,却能互相依从;相距很近而有不同的形态,即使在相同的行列上,也会互相背离。那么,齐同之术是非常关键的:不管多么错综复杂的度量、数值,只要运用它就会和谐,这就好像用佩戴的觽解绳结一样,不论碰到什么问题,没有不能解决的。乘使之散开,约使之聚合,齐同使之互相通达,这难道不是算法的纲纪吗?另一术:可以用分母除众分母之积作为率,用率分别乘各分子作为齐。实除以法。实不满法者,就用法命名一个分数。现在要求它们的实,所以使它们的分子分别相齐,使它们的分母相同,用分母分别相除。其余数用等数约简,就得到结果。所谓相同的法作为分母,实中的余数作为分子的情况,都遵从此例。如果分母本来就相同,便直接将它们相加。

    今有九分之八,减其五分之一。问:余几何?

    荅曰:四十五分之三十一。

    又有四分之三,减其三分之一。问:余几何?

    荅曰:十二分之五。

    减分〔1〕臣淳风等谨按:诸分子、母数各不同,以少减多,欲知余几,减余为实,故曰减分。术曰:母互乘子,以少减多,余为实。母相乘为法。实如法而一〔2〕。“母互乘子”知〔3〕,以齐其子也,“以少减多”知,齐故可相减也。“母相乘为法”者,同其母。母同子齐,故如母而一,即得。

    今有八分之五,二十五分之十六。问:孰多?多几何?

    荅曰:二十五分之十六多,多二百分之三。

    又有九分之八,七分之六。问:孰多?多几何?

    荅曰:九分之八多,多六十三分之二。

    又有二十一分之八,五十分之十七。问:孰多?多几何?

    荅曰:二十一分之八多,多一千五十分之四十三。课分〔4〕臣淳风等谨按:分各异名,理不齐一,校其相多之数,故曰课分也。术曰:母互乘子,以少减多,余为实。母相乘为法。实如法而一,即相多也〔5〕。臣淳风等谨按:此术母互乘子,以少分减多分。按〔6〕:此术多与减分义同。唯相多之数,意共减分有异:减分知〔7〕,求其余数有几;课分知,以其余数相多也。

    【注释】

    〔1〕减分:将分数相减。李籍云“减分者,欲知其余”。减,《说文解字》与李籍均云:“减,损也。”减分术,就是将分数相减的方法。

    〔2〕“母互乘子”五句:即分数减法法则,设,则

    〔3〕知:与下文“‘以少减多’知”,二“知”字,训“者”,见刘徽序“故枝条虽分而同本干知”之注释。

    〔4〕课分:就是考察分数的大小。李籍云:“欲知其相多。”课,考察,考核。《管子·明法》:“明分职而课。”李籍云:课,“校也”。课分术,就是比较分数大小的方法。元、明的著作常将两者归结为同一术,或称为减分术,或称为课分术。

    〔5〕课分术的程序与减分术(1-3)基本相同。

    〔6〕李淳风等指出减分术与课分术的区别:前者是求余数是多少,后者是将余数看作相多的数。

    〔7〕减分知:与下文“课分知”,两“知”字训“者”,说见刘徽序“故枝条虽分而同本干知”之注释。

    【译文】

    减分淳风等按:诸分子、分母的数值各不相同,以小减大,要知道余几。使相减的余数作为实,所以叫作减分。术:分母互乘分子,以小减大,余数作为实。分母相乘作为法。实除以法。“分母互乘分子”,是为了使它们的分子相齐;“以小减大”,是因为分子已经相齐,故可以相减。“分母相乘作为法”,是为了使它们的分母相同。分母相同,分子相齐,所以相减的余数除以分母,即得结果。

    课分淳风等按:诸分数各有不同的分数单位,在数理上不整齐划一。比较它们相多的数,所以叫作课分。术:分母互乘分子,以小减大,余数作为实。分母相乘作为法。实除以法,就得到相多的数。淳风等按:此术中分母互乘分子,以小减大。按:此术与减分的意义大体相同,只是求相多的数,意思跟减分有所不同:减分是求它们的余数有几,课分是将余数看作相多的数。

    今有三分之一,三分之二,四分之三。问:减多益少〔1〕,各几何而平〔2〕?

    荅曰:减四分之三者二,三分之二者一,并,以益三分之一,而各平于十二分之七〔3〕。

    又有二分之一,三分之二,四分之三。问:减多益少,各几何而平?

    荅曰:减三分之二者一,四分之三者四,并,以益二分之一,而各平于三十六分之二十三。

    平分〔4〕臣淳风等谨按:平分知〔5〕,诸分参差,欲令齐等,减彼之多,增此之少,故曰平分也。术曰:母互乘子,齐其子也。副并为平实〔6〕。臣淳风等谨按:母互乘子,副并为平实知,定此平实主限,众子所当损益知,限为平〔7〕。母相乘为法。“母相乘为法”知,亦齐其子,又同其母〔8〕。以列数乘未并者各自为列实。亦以列数乘法〔9〕。此当副置列数除平实,若然则重有分,故反以列数乘同齐〔10〕。  臣淳风等谨又按:问云所平之分多少不定,或三或二,列位无常。平三知,置位三重;平二知,置位二重。凡此之例,一准平分不可预定多少,故直云列数而已。以平实减列实〔11〕,余,约之为所减〔12〕。并所减以益于少〔13〕。以法命平实,各得其平〔14〕。

    【注释】

    〔1〕益:增加。方程章之“损益”,与此“益”同义。宋元时期又用之表示开方式的负系数,如“益隅”就是负的最高次幂。

    〔2〕平:平均值。李籍云:“均也。”

    〔3〕此处“二”、“一”均是以十二为分母的分数的分子。这是说从减,从减,将加到上,得到它们的平均值。这实际上是将分母先置于旁边。下问同此。这种方法在宋元时期发展为处理分式运算的方式,称为“寄母”。

    〔4〕平分:求几个分数的平均值。李籍云:“平分者,欲减多增少,而至于均。”平分术,求几个分数的平均值的方法。以求三个分数的平均值为例。列数是3。

    〔5〕平分知:与下文“平实知”、“损益知”、“母相乘为法知”,此四“知”字,训“者”,说见刘徽序“故枝条虽分而同本干知”之注释。

    〔6〕并:加。李籍云:“兼也。别兼算位,有所合也。”  平实:分母互乘分子,求其和,称为平实。分子分别得adf,bcf,bde,平实为adf+bcf+bde。

    〔7〕“定此平实主限”三句:确定这个平实作为主要的界限。各个分子所应当减损增益的,以这个界限作为标准。

    〔8〕齐其子:分母互乘分子就是齐其子。  同其母:分母相乘就是同其母。分母得bdf,称为法。

    〔9〕“以列数乘未并者”二句:以列数乘相齐后还没有相加的分子,得列实3adf,3bcf,3bde。又以列数乘法,得3bdf。未并者,指相齐后还没有相加的分子。

    〔10〕“此当副置列数除平实”三句:这是说,《九章算术》的方法有些曲折,本来用列数先除平实,再用法除即可。但是如此可能出现“重有分”的情形,故反过来,用列数乘同,得3bdf,又用列数乘齐,得3adf,3bcf,3bde。重有分,即今之繁分数。同,指术文中的法。齐,指术文中的“未并者”。

    〔11〕以平实减列实:得3adf-(adf+bcf+bde),3bcf-(adf+bcf+bde),3bde-(adf+bcf+bde)。

    〔12〕约之为所减:是指以平实减列实的余数与法3bdf约简(见下注),作为应该从大的数中减去的分子。

    〔13〕并所减以益于少:将应该减去的分子相加,增益到小的分子上。

    〔14〕以法命平实,各得其平:以法除平实,得到平均值。此即。法,指列数与原“法”之积3bdf。之所以仍称为“法”,是因为此位置为“法”,是位值制的一种表示。

    【译文】

    平分淳风等按:平分是当各个分数参差不齐时,想使它们齐等。减那个分数所多的部分,增益这个分数所少的部分,所以叫作平分。术:分母互乘分子,这是为了使它们的分子相齐。在旁边将它们相加作为平实。淳风等按:“分母互乘分子,在旁边将它们相加作为平实”,是为了确立这个平实作为主要的界限。各个分子所应当减损的、增益的,以这个界限作为标准。分母相乘作为法。“分母相乘作为法”的原因是,既然已使它们的分子相齐,也应该使它们的分母相同。以分数的个数乘未相加的分子,各自作为列实。同时以分数的个数乘法。这本来应当在旁边布置分数的个数去除平实。如果那样做,就会出现双重分数,所以反过来用分数的个数乘同与齐。  淳风等又按:问题给出的要求其平均值的分数的个数多少不一定,有时是3个,有时是2个,个数不固定。求3个分数的平均值,就布置3位,求2个分数的平均值,就布置2位。凡是这类例子,求其平均值的分数的个数不能预定多少,所以直接说“个数”就够了。用平实减列实,用法将其余数约简,作为应该从大的数中减去的分子。将应该减去的分子相加,增益到小的分子上。用法除平实,便得到各分数的平均值。

    今有七人,分八钱三分钱之一〔1〕。问:人得几何?

    荅曰:人得一钱二十一分钱之四。

    又有三人三分人之一,分六钱三分钱之一、四分钱之三。问:人得几何?

    荅曰:人得二钱八分钱之一。

    经分〔2〕臣淳风等谨按:经分者,自合分已下,皆与诸分相齐,此乃直求一人之分。以人数分所分,故曰经分也〔3〕。术曰:以人数为法,钱数为实,实如法而一。有分者通之〔4〕;母互乘子知〔5〕,齐其子;母相乘者,同其母;以母通之者,分母乘全内子〔6〕。乘,散全则为积分〔7〕,积分则与分子相通之,故可令相从。凡数相与者谓之率〔8〕。率知,自相与通〔9〕。有分则可散,分重叠则约也〔10〕。等除法实,相与率也〔11〕。故散分者,必令两分母相乘法实也。重有分者同而通之〔12〕。又以法分母乘实,实分母乘法〔13〕。此谓法、实俱有分,故令分母各乘全分内子〔14〕,又令分母互乘上下。

    【注释】

    〔1〕由秦汉数学简牍知道,先秦的名数分数的表示方式也多种多样。比如现今的以尺为单位的分数尺(m,a,b均为正整数),有的在“分”后无名数单位,表示成m尺b分a,或m尺b分之a。有的在“分”后有名数单位,表示成m尺b分尺a,或m尺有b分尺之a,或m尺b分尺之a。张苍等整理《九章算术》,遂统一为m尺b分尺之a。

    〔2〕经分:本义是分割分数,也就是分数相除。李籍云:“经分者,欲径求一人之分而至于径。”似受李淳风等影响,未必符合原意。经,划分,分割。《孟子·滕文公》:“夫仁政必自经界始。”李籍引《释名》曰:“经者,径也。”经分术,分数除法。“经分”在《算数书》中作“径分”。《九章算术》与《算数书》中的经分术的例题中被除数都是分数,而除数可以是分数也可以是整数。但在本卷乘分术刘徽注、卷三衰分术的刘徽注、卷二反其率术的李淳风等注释中,将除数、被除数都是整数的除法也称为经分,不知是不是符合《九章算术》之义。

    〔3〕李淳风等将“经分”理解成“以人数分所分”,“直求一人之分”,也就是说含有整数除法。

    〔4〕有分者通之:此言实即被除数是分数,法即除数是整数的情形。此时需将实与法通分,其法则是

    〔5〕母互乘子知:与下文“率知”,此二“知”字,训“者”,其说见刘徽序“故枝条虽分而同本干知”之注释。

    〔6〕以母通之者,分母乘全内子:此谓以分母通分,就是将分数的整数部分乘以分母后纳入分子,化成假分数。内(nà),交入,纳入,后作“纳”。《史记·秦始皇本纪》:“百姓内粟千石,拜爵一级。”

    〔7〕积分:即分之积,与“积步”、“积里”、“积尺”等术语同类。“积分”与现代数学的积分当然不同,但两者的渊源关系是不言而喻的。清末李善兰等以此翻译“integral”,非常恰当。

    〔8〕凡数相与者谓之率:凡诸数相关就称之为率。这是刘徽关于“率”的定义。相与,相关。《周易·咸》:“二气感应以相与。”

    〔9〕自:本来,本是。《乐府诗集》:“东家有贤女,自名秦罗敷。”

    〔10〕有分则可散,分重叠则约也:如果有分数就可以散开,分数单位重叠就可以约简。散,散分。通过乘以散之,即下文之“两分母相乘法实”,化成相与率。

    〔11〕相与率:就是没有等数(公约数)的一组率关系。刘徽在运算中经常使用相与率,它在某种意义上弥补了中国古算中没有互素概念的不足。

    〔12〕重(chónɡ)有分:在这里是分数除分数的情形,将除写成分数的关系,就是繁分数。其法则是

    〔13〕以法分母乘实,实分母乘法:这是分数除法中的颠倒相乘法

    过去,中国数学史界一直认为这是刘徽的首创。实际上,《算数书》“启从”条提出“广分子乘积分母为法,积分子乘广分母为实”,就是分数除法中的颠倒相乘法。可见先秦时人们已经掌握了颠倒相乘法,张苍等整理《九章算术》时没有采用。

    〔14〕全分:即“全”,整数部分。

    【译文】

    经分淳风等按:经分,自合分术以下,皆使诸分数相齐。这里却是直接求一人所应分得的部分。用人数去分所分的数,所以叫作经分。术:把人数作为法,钱数作为实,实除以法。如果有分数,就将其通分。分母互乘分子,是为了使它们的分子相齐;分母相乘,是为了使它们的分母相同;用分母将其通分,使用分母乘整数部分再纳入分子。通过乘将整数部分散开,就成为积分。积分就与分子相通达,所以可以使它们相加。凡是互相关联的数量,就把它们叫作率。率,本来就互相关联通达;如果有分数就可以散开,分数单位重叠就可以约简;用等数除法与实,就得到相与率。所以,散分就必定使两分母互乘法与实。有双重分数的,就要化成同分母而使它们通达。又可以用法的分母乘实,用实的分母乘法。这里是说法与实都是分数,所以分别用分母乘整数部分纳入分子,又用分母互乘分子、分母。

    今有田广七分步之四,从五分步之三。问:为田几何?

    荅曰:三十五分步之十二。

    又有田广九分步之七,从十一分步之九。问:为田几何?

    荅曰:十一分步之七。

    又有田广五分步之四,从九分步之五〔1〕。问:为田几何?

    荅曰:九分步之四。

    乘分〔2〕臣淳风等谨按:乘分者,分母相乘为法,子相乘为实,故曰乘分。术曰:母相乘为法,子相乘为实,实如法而一〔3〕。凡实不满法者而有母、子之名〔4〕。若有分,以乘其实而长之〔5〕。则亦满法,乃为全耳〔6〕。又以子有所乘,故母当报除〔7〕。报除者,实如法而一也。今子相乘则母各当报除,因令分母相乘而连除也〔8〕。此田有广、从,难以广谕。设有问者曰:马二十匹,直金十二斤〔9〕。今卖马二十匹,三十五人分之,人得几何?荅曰:三十五分斤之十二。其为之也,当如经分术,以十二斤金为实,三十五人为法。设更言马五匹,直金三斤。今卖四匹,七人分之,人得几何?荅曰:人得三十五分斤之十二。其为之也,当齐其金、人之数,皆合初问入于经分矣〔10〕。然则“分子相乘为实”者,犹齐其金也;“母相乘为法”者,犹齐其人也。同其母为二十,马无事于同,但欲求齐而已〔11〕。又,马五匹,直金三斤,完全之率〔12〕;分而言之,则为一匹直金五分斤之三〔13〕。七人卖四马,一人卖七分马之四〔14〕。金与人交互相生,所从言之异,而计数则三术同归也〔15〕。

    今有田广三步三分步之一,从五步五分步之二。问:为田几何?

    荅曰:十八步。

    又有田广七步四分步之三,从十五步九分步之五。问:为田几何?

    荅曰:一百二十步九分步之五。

    又有田广十八步七分步之五,从二十三步十一分步之六。问:为田几何?

    荅曰:一亩二百步十一分步之七。

    大广田〔16〕臣淳风等谨按:大广田知〔17〕,初术直有全步而无余分〔18〕;次术空有余分而无全步〔19〕;此术先见全步复有余分〔20〕,可以广兼三术,故曰大广〔21〕。术曰:分母各乘其全,分子从之,“分母各乘其全,分子从之”者,通全步内分子,如此则母、子皆为实矣。相乘为实。分母相乘为法。犹乘分也。实如法而一〔22〕。今为术广从俱有分,当各自通其分。命母入者,还须出之,故令“分母相乘为法”而连除之。

    【注释】

    〔1〕此问是广大于从的情形。

    〔2〕乘分:分数相乘。李籍云:“乘分者,欲知其所积。”乘分术,就是分数相乘的方法。李籍云:“自合分已下,独乘言田,而皆列于方田者,欲其学数者不可后也。故说算者以谓‘为术者先治诸分’。能治诸分,则数学之能事尽矣。”这里道出了将分数四则运算法则列入方田章的原因。

    〔3〕“母相乘为法”三句:此即分数乘法法则。

    〔4〕凡实不满法者而有母、子之名:当实除以法时,如果出现实不满法的情形,即有余数,则以余数作为分子,法作为分母,就成为一个分数。这是分数产生的第二种方式。

    〔5〕若有分,以乘其实而长之:如果有分数,以某数乘其实(分子),会使它增长。

    〔6〕则亦满法,乃为全耳:则如果有满法(分母)的部分,就得到整数。亦,连词,相当于假如。《诗经·小雅·雨无正》:“云不可使,得罪于投资,亦云可使,怨及朋友。”全,整数。

    〔7〕报除:回报以除。报,回报,回赠。《诗经·卫风·木瓜》:“投我以木瓜,报之以琼琚。”

    〔8〕今子相乘则母各当报除,因令分母相乘而连除:如果分子相乘,则应当分别以分母回报以除,因而将分母相乘而连在一起除。即。连除,连在一起除。连,联合,连接。

    〔9〕直:值,价格。《史记·平准书》:“乃以白鹿皮方尺,缘以藻绩,为皮币,直四十万。”

    〔10〕入于经分:纳入经分术。刘徽此处亦将整数相除归于经分。入,纳入。卷五刘徽注“以负土术入之”,卷八《九章算术》经文“以方程术入之”,皆同义。

    〔11〕此是以齐同术解卖马分金的问题。

    〔12〕完全:整数。5匹马值3斤金,都是整数。

    〔13〕分而言之:以分数表示之。1匹马值斤金,是分数。

    〔14〕此是以乘分术解卖马分金的问题。

    〔15〕三术:指解决此问的经分术、齐同术和乘分术。

    〔16〕大广田:《算数书》的“大广”条提出大广术,与此基本一致。

    〔17〕知:训“者”,说见刘徽序“故枝条虽分而同本干知”之注释。

    〔18〕初术:指方田术,此术中的数都是整数。  直:只,只是,仅。《孟子·梁惠王上》:“直不百步耳,是亦走也。”  余分:分数部分。

    〔19〕次术:指乘分术,此术中的数都是真分数。  空:只,仅。《齐民要术》:“取石首鱼、麨鱼、鲻鱼三种肠、肚、胞,齐净洗,空著白盐。”

    〔20〕见(xiàn):显露,显现。《广韵》:“见,露也。”《周易·乾》:“见龙在田。”下文“见径”、“见其形”、“见幂”之“见”均同。

    〔21〕三术:是方田术、乘分术和大广田术。

    〔22〕“分母各乘其全”五句:设两个带分数为和,其中a,b分别是两个分数的整数部分。其法则就是

    【译文】

    乘分淳风等按:对于乘分,分母相乘作为法,分子相乘作为实,所以叫作乘分。术:分母相乘作为法,分子相乘作为实,实除以法。凡是有实不满法的情况才有分母、分子的名称。若有分数,通过乘它的实而扩大它,则如果满了法,就形成整数部分。又因为分子有所乘,所以在分母上应当用除回报。用除回报,就是实除以法。如果分子相乘,则应当分别以分母回报以除,因而将分母相乘而连在一起除。这里田地有宽、长,难以比喻更多的方面。假设有人问:20匹马值12斤金。如果卖掉20匹马,35人分所得的金,每人得多少?答:斤金。那处理它的方式,应当像经分术那样,以12斤金作为实,以35人作为法。又假设说:5匹马,值3斤金,如果卖掉4匹,7人分所得的金,每人得多少?答:每人得斤金。那处理它的方式,应当使金、人的数相齐,都符合开始的问题,而纳入经分术了。那么,“分子相乘作为实”,如同使其中的金相齐;“分母相乘作为法”,如同使其中的人相齐。使它们的分母相同,成为20。马除了用来使分母相同之外没有什么作用,只是想用它求金、人相齐之数罢了。又,5匹马,值3斤金,这是整数之率;若用分数表示之,就是1匹马值斤金。7人卖4匹马,1人卖匹马。金与人交互相生。表示它们的言辞虽然不同,然而计算所得的数值,则三种方法殊途同归。

    大广田淳风等按:开头的术只有整数步而无分数,第二术只有分数而无整数步,此术先出现整数步,又有分数,可以广泛地兼容三种术,所以叫作大广。术:分母分别乘自己的整数部分,加入分子,“分母分别乘自己的整数部分,加入分子”,这是将整数部分通分,纳入分子。这样,分子、分母都化成为实。互相乘作为实。分母相乘作为法。如同乘分术。实除以法。现在所建立的术是宽、长都有分数部分,应当各自通分。既然分母已融入分子,那么还必须将它剔除,所以将分母相乘作为法而一下子除。

    今有圭田广十二步〔1〕,正从二十一步〔2〕。问:为田几何?

    荅曰:一百二十六步。

    又有圭田广五步二分步之一,从八步三分步之二〔3〕。问:为田几何?

    荅曰:二十三步六分步之五。

    术曰:半广以乘正从〔4〕。半广知〔5〕,以盈补虚为直田也〔6〕。亦可半正从以乘广〔7〕。按半广乘从,以取中平之数〔8〕,故广从相乘为积步〔9〕。亩法除之,即得也。

    【注释】

    〔1〕圭田:本是古代卿大夫士供祭祀用的田地。《孟子·滕文公上》:“卿以下必有圭田。”圭田应是等腰三角形。李籍云:“圭田者,其形上锐有如圭然。”《九章算术》之圭田可以理解为三角形。如图1-2(1)。《夏侯阳算经》“圭田”自注云“三角之田”。圭,本是古代帝王、诸侯举行隆重仪式所执玉制礼器,上尖下方。李籍引《白虎通》曰:“圭者,上锐,象物皆生见于上也者。”

    图1-2 圭田

    (采自译注本《九章算术》)

    〔2〕正从:即“正纵”,三角形的高。

    〔3〕从八步三分步之二:此圭田给出“从”,而不说“正从”,可见从就是正从,即其高。因此此圭田应是勾股形。

    〔4〕这是圭田面积公式

    其中S,a,h分别是圭田的面积、广和正从。

    〔5〕知:训“者”,说见刘徽序“故枝条虽分而同本干知”之注释。

    〔6〕以盈补虚:在卷五称为“损广补狭”,在卷九称为“出入相补”,今通称为出入相补原理。出入相补原理基于这样两个明显的事实:一是将一个图形平移或旋转不改变该图形的面积或体积,一是将一个图形分割成若干部分,则所有这些部分的面积或体积的总和等于原图形的面积或体积。圭田面积的以盈补虚方法如图1-2(2)所示。

    〔7〕这是刘徽记载的圭田面积的另一公式。其以盈补虚方法如图1-2(3)所示。

    〔8〕中平之数:平均值。中平,中,中等,平均。

    〔9〕此是刘徽记载的关于圭田面积公式的推导。将图1-2(2),1-2(3)中的Ⅰ,Ⅱ分别移到Ⅰ′,Ⅱ′处,便将圭田化为直田,由方田术求解。

    【译文】

    假设有一块圭田,宽12步,长21步。问:田的面积是多少?

    答:126步2。

    又假设有一块圭田,宽步,长步。问:田的面积是多少?

    答:步2。

    术:用宽的一半乘高。取宽的一半,是为了以盈补虚,使它变为长方形田。又可以取高的一半,以它乘宽。按:宽的一半乘高,是为了取其宽的平均值,所以宽与长相乘成为积步。以亩法除之,就得到答案。

    今有邪田〔1〕,一头广三十步,一头广四十二步,正从六十四步〔2〕。问:为田几何?

    荅曰:九亩一百四十四步。

    又有邪田,正广六十五步,一畔从一百步,一畔从七十二步〔3〕。问:为田几何?

    荅曰:二十三亩七十步。

    术曰:并两邪而半之〔4〕,以乘正从若广〔5〕。又可半正从若广,以乘并〔6〕。亩法而一。并而半之者,以盈补虚也〔7〕。

    今有箕田,舌广二十步,踵广五步〔8〕,正从三十步。问:为田几何?

    荅曰:一亩一百三十五步。

    又有箕田,舌广一百一十七步,踵广五十步,正从一百三十五步。问:为田几何?

    荅曰:四十六亩二百三十二步半。

    术曰:并踵、舌而半之,以乘正从。亩法而一〔9〕。中分箕田则为两邪田,故其术相似〔10〕。又可并踵、舌,半正从以乘之〔11〕。

    【注释】

    〔1〕此问之邪田如图1-3(1)所示。  邪田:直角梯形。邪,斜。

    图1-3 邪田

    (采自译注本《九章算术》)

    〔2〕正从:高。

    〔3〕此问之邪田如图1-3(2)所示。两问之邪田在数学上没有什么不同。  正广:指直角梯形两直角间的边。  畔:边侧。

    〔4〕两邪:指与邪边相邻的两广或两从,此是古汉语中实词活用的修辞方式。

    〔5〕以乘正从若广:以并两邪而半之乘正从或广。若,训“或”,或者。《左传·定公元年》:“若从践土,若从宋,亦唯命。”商功章城、垣、堤、沟、堑、渠术,刍童、曲池、盘池、冥谷术之“若”与此同义。这里给出邪田面积公式

    其中S,a1,a2,h分别是邪田的面积、一头广或一畔从、另一头广或一畔从,以及正从或广。

    〔6〕此给出邪田面积的另一公式

    〔7〕证明以上两个公式的以盈补虚方法分别如图1-3(3),(4)所示。分别将Ⅰ分别移到Ⅰ′处即可。

    〔8〕箕田:是形如簸箕的田地,即一般的梯形,如图1-4(1)。李籍云:“箕田者,有舌有踵,其形哆侈,如有箕然。”又引《诗经》曰:“哆兮侈兮,成是南箕。”箕,簸箕,簸米去糠的器具。  踵:脚后跟。舌和踵分别是梯形的上底与下底。

    图1-4 箕田

    (采自译注本《九章算术》)

    〔9〕此给出箕田面积公式,其中S,a1,a2,h分别是箕田的面积、舌、踵和正纵,与(1-7-1)相同。

    〔10〕箕田分割成两邪田,如图1-4(2)所示。  相似:相类,相像。《周易·系辞上》:“与天地相似,故不违。”

    〔11〕刘徽提出箕田的另一面积公式,与(1-7-2)相同。

    【译文】

    假设有一块斜田,一头宽30步,一头宽42步,长64步。问:田的面积是多少?

    答:9亩144步2。

    又假设有一块斜田,宽65步,一侧的长100步,另一侧的长72步。问:田的面积是多少?

    答:23亩70步2。

    术:求与斜边相邻两宽或两长之和,取其一半,以乘长或宽。

    又可以取其长或宽的一半,用以乘两宽或两长之和。除以亩法。求其和,取其一半,这是以盈补虚。

    假设有一块箕田,舌处宽20步,踵处宽5步,长30步。问:田的面积是多少?

    答:1亩135步2。

    又假设有一块箕田,舌处宽117步,踵处宽50步,长135步。问:田的面积是多少?

    答:46亩步2。

    术:求踵、舌处的两宽之和而取其一半,以它乘长。除以亩法。从中间分割箕田,则成为两块斜田,所以它们的术相似。又可求踵、舌处两宽之和,取长的一半,用来相乘。

    今有圆田〔1〕,周三十步,径十步〔2〕。臣淳风等谨按:术意以周三径一为率,周三十步,合径十步。今依密率〔3〕,合径九步十一分步之六。问:为田几何?

    荅曰:七十五步。此于徽术〔4〕,当为田七十一步一百五十七分步之一百三。  臣淳风等谨依密率,为田七十一步二十二分步之一十三。

    又有圆田,周一百八十一步,径六十步三分步之一。臣淳风等谨按:周三径一,周一百八十一步,径六十步三分步之一。依密率,径五十七步二十二分步之十三。问:为田几何?

    荅曰:十一亩九十步十二分步之一。此于徽术,当为田十亩二百八步三百一十四分步之一百一十三。  臣淳风等谨依密率,为田十亩二百五步八十八分步之八十七。

    术曰:半周半径相乘得积步〔5〕。按:半周为从,半径为广,故广从相乘为积步也〔6〕。假令圆径二尺,圆中容六觚之一面〔7〕,与圆径之半,其数均等。合径率一而弧周率三也〔8〕。  又按:为图〔9〕,以六觚之一面乘一弧半径〔10〕,因而三之〔11〕,得十二觚之幂〔12〕。若又割之,次以十二觚之一面乘一弧之半径〔13〕,因而六之〔14〕,则得二十四觚之幂。割之弥细〔15〕,所失弥少〔16〕。割之又割,以至于不可割〔17〕,则与圆周合体而无所失矣〔18〕。觚面之外,犹有余径〔19〕,以面乘余径,则幂出弧表〔20〕。若夫觚之细者,与圆合体,则表无余径〔21〕。表无余径,则幂不外出矣〔22〕。以一面乘半径,觚而裁之〔23〕,每辄自倍〔24〕。故以半周乘半径而为圆幂〔25〕。此以周、径,谓至然之数〔26〕,非周三径一之率也。周三者,从其六觚之环耳〔27〕。以推圆规多少之觉〔28〕,乃弓之与弦也〔29〕。然世传此法,莫肯精核;学者踵古〔30〕,习其谬失〔31〕。不有明据,辩之斯难。凡物类形象,不圆则方。方圆之率,诚著于近,则虽远可知也〔32〕。由此言之,其用博矣。谨按图验,更造密率。恐空设法,数昧而难譬〔33〕,故置诸检括〔34〕,谨详其记注焉〔35〕。  割六觚以为十二觚术曰:置圆径二尺,半之为一尺,即圆里觚之面也。令半径一尺为弦,半面五寸为句,为之求股〔36〕:以句幂二十五寸减弦幂〔37〕,余七十五寸,开方除之,下至秒、忽〔38〕。又一退法,求其微数〔39〕。微数无名知以为分子〔40〕,以十为分母,约作五分忽之二。故得股八寸六分六厘二秒五忽五分忽之二〔41〕。以减半径,余一寸三分三厘九毫七秒四忽五分忽之三,谓之小句。觚之半面而又谓之小股。为之求弦〔42〕。其幂二千六百七十九亿四千九百一十九万三千四百四十五忽〔43〕,余分弃之〔44〕。开方除之,即十二觚之一面也〔45〕。  割十二觚以为二十四觚术曰:亦令半径为弦,半面为句,为之求股〔46〕。置上小弦幂,四而一,得六百六十九亿八千七百二十九万八千三百六十一忽,余分弃之,即句幂也〔47〕。以减弦幂,其余开方除之,得股九寸六分五厘九毫二秒五忽五分忽之四〔48〕。以减半径,余三分四厘七秒四忽五分忽之一,谓之小句。觚之半面又谓之小股。为之求小弦〔49〕。其幂六百八十一亿四千八百三十四万九千四百六十六忽,余分弃之〔50〕。开方除之,即二十四觚之一面也〔51〕。  割二十四觚以为四十八觚术曰:亦令半径为弦,半面为句,为之求股〔52〕。置上小弦幂,四而一,得一百七十亿三千七百八万七千三百六十六忽,余分弃之,即句幂也〔53〕。以减弦幂,其余,开方除之,得股九寸九分一厘四毫四秒四忽五分忽之四〔54〕。以减半径,余八厘五毫五秒五忽五分忽之一,谓之小句〔55〕。觚之半面又谓之小股。为之求小弦〔56〕。其幂一百七十一亿一千二十七万八千八百一十三忽,余分弃之。开方除之,得小弦一寸三分八毫六忽,余分弃之,即四十八觚之一面〔57〕。以半径一尺乘之,又以二十四乘之,得幂三万一千三百九十三亿四千四百万忽。以百亿除之,得幂三百一十三寸六百二十五分寸之五百八十四,即九十六觚之幂也〔58〕。  割四十八觚以为九十六觚术曰:亦令半径为弦,半面为句,为之求股〔59〕。置次上弦幂,四而一,得四十二亿七千七百五十六万九千七百三忽,余分弃之,则句幂也〔60〕。以减弦幂,其余,开方除之,得股九寸九分七厘八毫五秒八忽十分忽之九〔61〕。以减半径,余二厘一毫四秒一忽十分忽之一,谓之小句。觚之半面又谓之小股。为之求小弦〔62〕。其幂四十二亿八千二百一十五万四千一十二忽,余分弃之。开方除之,得小弦六分五厘四毫三秒八忽,余分弃之,即九十六觚之一面〔63〕。以半径一尺乘之,又以四十八乘之,得幂三万一千四百一十亿二千四百万忽。以百亿除之,得幂三百一十四寸六百二十五分寸之六十四,即一百九十二觚之幂也〔64〕。以九十六觚之幂减之,余六百二十五分寸之一百五,谓之差幂〔65〕。倍之,为分寸之二百一十,即九十六觚之外弧田九十六所,谓以弦乘矢之凡幂也〔66〕。加此幂于九十六觚之幂,得三百一十四寸六百二十五分寸之一百六十九,则出于圆之表矣〔67〕。故还就一百九十二觚之全幂三百一十四寸以为圆幂之定率而弃其余分〔68〕。以半径一尺除圆幂,倍所得,六尺二寸八分,即周数〔69〕。令径自乘为方幂四百寸,与圆幂相折,圆幂得一百五十七为率,方幂得二百... -->>

本章未完,点击下一页继续阅读

请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”